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Abstract
A statistical field theory is developed to explore the density of states and spatial
profile of ‘tail states’ at the edge of the spectral support of a general class
of disordered non-Hermitian operators. These states, which are identified
with symmetry broken, instanton field configurations of the theory, are
closely related to localized sub-gap states recently identified in disordered
superconductors. By focusing separately on the problems of a quantum
particle propagating in a random imaginary scalar potential, and a random
imaginary vector potential, we discuss the methodology of our approach and
the universality of the results. Finally, we address some potential physical
applications of our findings.

PACS numbers: 05.45.–a, 02.30.Tb, 11.10.−z, 64.60.–i

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Over recent years the statistical properties of stochastic non-Hermitian operators have come
under intense scrutiny [1–19]. Operators of this kind appear in a number of physical
applications ranging from random classical dynamics,and statistical physics, to phase breaking
and relaxation in quantum dynamics. For example, a straightforward mapping shows the
statistical mechanics of a repulsive polymer chain that can be described in terms of the
quantum dynamics of a particle subject to a random imaginary scalar potential [20, 21].
Similarly, the statistical mechanics of flux lines in a type-II superconductor pinned by a
background of impurities can be described as the quantum evolution of a particle in a disordered
environment, subject to an imaginary vector potential [3]. Finally, the diffusion of a classical
particle advected by a random velocity field is described by a linear non-Hermitian operator,
the ‘passive scalar’ equation [9]. More generally, the dynamics of various classical systems
can be expressed in terms of random Fokker–Planck operators (for a review see, e.g. [22, 23]).

Non-Hermitian operators exhibit several qualitatively new phenomena which discriminate
their behaviour from those of their random Hermitian counterparts. Firstly, while the
eigenvalues of Hermitian operators are real, the spectrum of non-Hermitian operators is
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generically complex, bound by some region of support in the complex plane. The second
striking distinction concerns the localization properties of the eigenfunctions. It is well
established that a weak random impurity potential brings about the localization of all the
eigenstates of a Hermitian operator in dimensions of two and lesser [24, 25]. By contrast,
a constant imaginary vector potential is sufficient to delocalize the states of the disordered
system even in one-dimension! This phenomenon, which was reported and explained by
Hatano and Nelson [3], finds extension to higher dimensions [18].

Beginning with the early work on random matrix ensembles [26, 27], a variety of
techniques have been developed to study the statistical properties of stochastic non-Hermitian
operators [1–19]. Some of the techniques are based on the random matrix theory [1, 2, 6–
8, 14, 26, 27], while others involved the development of perturbative schemes, such as the
self-consistent Born approximation in the diagrammatic analysis (e.g. [9]). In this paper we
are concerned with adapting a third approach which involves the refinement of field theoretic
techniques which have proved to be very useful in the description of random Hermitian
operators.

Recently, attention has been directed towards the study of ‘tail states’ which persist at the
edge of the spectral support of the non-Hermitian system. Indeed, already there are indications
[28–30] that an important role can be played by those parts of the spectrum which are populated
by rare states. Now, in stochastic Hermitian systems, a small tail of states accumulate
below the band edge tightly bound to rare or ‘optimal fluctuations’ of the random potential
[31–34]. These so-called ‘Lifshitz tail’ states are typically smooth, node-less, localized
functions which inhabit regions where the potential is particularly shallow and smooth. By
contrast, the character of the complex spectrum in non-Hermitian operators allows the existence
of tail states that occupy the entire region which bounds the support of the spectrum.

The difference is not incidental: tail states in the non-Hermitian system can exhibit
features characteristic of the quasi-classical states within the bulk spectrum. To emphasize
the point, consider the spectrum of, say, a two-dimensional free quantum particle subject to a
complex scalar potential, which involves both real and imaginary components

Ĥ = p̂2

2m
+ iV (r) + W(r) (1)

where p̂ = −ih̄∇. If the imaginary potential V is absent, a region of localized tail states
accumulate below the band edge (ε < 0) due to the optimal configurations of the potential.
At energies ε greatly in excess of the inverse scattering time h̄/τ , bulk states are only ‘weakly
localized’ with a localization length ξloc greatly in excess of scattering mean-free path  and
wavelength λ. This is the quasi-classical regime where mechanisms of quantum interference
strongly affect the spectral and transport properties of the system [24, 25].

In this background, let us now suppose that a small imaginary component of the potential
is restored. Being non-Hermitian, the eigenvalues migrate into the complex plane occupying
a finite region of support centred on the real axis (see figure 1). At the level of the mean-field
analysis (detailed below), complex eigenvalues are confined to a sharp region of support in
the complex plane. However, as with Lifshitz states, optimal fluctuations of the random
potential(s) generate states which lie outside the region of support (see figure 1). What is the
nature of these states? Are they localized and, if so, over what length scale? Here, in contrast
to the Hermitian system, tail states must accommodate fast fluctuations of the wavefunction
at the scale of the wavelength of the Hermitian system.

To our knowledge, the problem of tail states in the non-Hermitian system was first
considered in a recent work by Izyumov and Simons [16]. Refining an approach developed in
[33, 34] to explore tail states in Hermitian systems, the authors introduced a non-perturbative
scheme to investigate states at the edge of the support in non-Hermitian systems. This
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Figure 1. Complex eigenvalue spectrum for several realizations of the random non-Hermitian
Hamiltonian (1), where the potentials V and W are both drawn from a Gaussian δ-correlated
random impurity distribution. Here we have included a lattice of 29 × 29 q-points in the
momentum space.

instanton technique revealed the existence of tail states at the edge which are localized on a
length scale greatly in excess of the wavelength—tail states in the non-Hermitian system are
quasi-classical in nature. Building on the work of Efetov [35], the aim of the present paper is
to develop a supersymmetric field theory to explore the spatial profile of the states in the tail
region, and to determine the complex density of states (DoS) in the vicinity of the band edge.
In doing so, we will reveal a close correspondence between tail states in the non-Hermitian
problem and sub-gap states in the weakly disordered superconductors. Moreover, constraints
within the present scheme reveals the universal character of tail states in the non-Hermitian
system showing that, after a suitable rescaling, the profile of the DoS tail depends only on
dimensionality and separation from the support. In particular, in contrast to Lifshitz states in
the Hermitian system, properties of the tail states are universal, independent of the nature of
the random distribution.

To illustrate the generality of our approach we will consider two examples which,
according to the classification scheme defined below, belong to different fundamental
symmetry. Firstly, following our discussion above, we will investigate the properties of
tail states in a quantum system involving the propagation of a particle in a random scalar
potential involving both real and imaginary components (1). Secondly, we will investigate the
nature of tails states in a quantum system where the particle is subject to a random real scalar
potential and a random imaginary vector potential

Ĥ = [p̂ + ih(r)]2

2m
+ W(r). (2)

As well as in the Hatano–Nelson system [3], h = const, (2) has been studied in the context
of random classical dynamics involving classical diffusion in the background of a quenched
random velocity field. Identifying 1/2m with the classical diffusion constant D, and h/2m with
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a random velocity field v, a redefinition of the random potential W (r) obtains the classical
operator

Ĥ = −D∇2 + (∇ · v) + v · ∇ + W̄ (r).

In the quasi-classical approximation, (i.e. setting z as the complex energy, where
τ�[z] � h̄) our goal will be to show that the long-range, low-energy properties of the
random systems are described by a supersymmetric non-linear σ -model. At the level of the
mean-field, the spectrum of both non-Hermitian operators is seen bound to a region of support
inside the complex plane. By taking into account the non-perturbative symmetry-breaking
instanton field configurations of the action, we will reveal the existence of tail states which
extend beyond the region of support predicted by the mean-field. We will determine the
localization properties and profile of the DoS revealing an intrinsic universality of the present
scheme.

The paper is organized as follows: after introducing a general scheme to classify linear
non-Hermitian operators on the basis of their fundamental symmetries, in section 2 we
formulate a statistical field theory to describe the spectral properties of the random imaginary
scalar potential Hamiltonian. Within this approach, we show that the large scale properties of
the spectral support are determined by the saddle-point or mean-field properties of the theory.
Motivated by a parallel description of the disordered superconducting system, in section 2.3
we show that optimal fluctuations of the random impurity potential induce localized tail states
which extend beyond the region of support. Within this approach, we determine analytical
expressions for the spatial extent of the localized states in the tail region, and determine
the scaling of the complex DoS as a function of energy. Generalizing the scheme for the
consideration of the imaginary vector potential Hamiltonian in section 3, we emphasize the
universality of the present scheme. Results from both sections are compared with numerical
simulations. Finally, in section 4 we conclude our discussion.

2. Field theory of non-Hermitian operators

The aim of this section is to prepare a statistical field theory of the weakly disordered non-
Hermitian system. To be concrete, in the first instance, we will focus on the problem of
the imaginary scalar potential (1). Later, we will see that the field theoretic scheme is
easily modified to accommodate the constant vector potential perturbation. However, before
embarking on this program, it is useful to first contrast the general properties of complex linear
non-Hermitian operators with those of their Hermitian counterparts. Along with helping to
clarify the idiosyncrasies of the non-Hermitian system, we will expose a general scheme in
which non-Hermitian operators can be classified according to their fundamental symmetries.

2.1. Background: symmetry classification

A general non-Hermitian operator Ĥ is specified by left and right eigenfunctions

Ĥ|Ri〉 = zi|Ri〉 〈Li |Ĥ = 〈Li |zi
where {zi} denotes the set of complex eigenvalue. Although it is not a generic feature of
non-Hermitian operators, we will rely throughout on the assumption that the eigenfunctions
form a complete basis set. This is the case if there are no repeated eigenvalues, which will be
true for a generic random operator such as those studied here. Furthermore, we will take the
eigenstates to be orthonormal,

〈Li |Rj 〉 = δij
∑
i

|Ri〉〈Li | = I. (3)
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Now as with Hermitian operators, spectral (and localization) properties of the non-
Hermitian Hamiltonian can be expressed through the complex Green function

ĝ(z) = 1

z − Ĥ

where z = x + iy denotes the complex argument. Inserting the resolution of identity (3), one
obtains the spectral decomposition,

ĝ(z) =
∑
i

|Ri〉 1

z − zi
〈Li |. (4)

Using the analytical properties of the resolvent, it is straightforward to show that the density
of the complex eigenvalues

ν(z) = 1

Ld
tr δ(z − Ĥ ) = 1

πLd
lim
η→0

∑
i

η2

(|z − zi|2 + η2)2

is expressible in terms of the complex Green function through the identity (4)

ν(z) = 1

πLd
∂z∗ tr ĝ(z).

The complex Green function ĝ(z) is, therefore, a non-analytic function everywhere in the
complex z-plane in which the corresponding eigenvalues density is non-vanishing.

Previous studies have shown that techniques based on standard diagrammatic perturbation
theory account only for contributions to ĝ(z) which are analytic in z [1]. To account for all
contributions, it is convenient to follow the now standard route [8, 9, 27] of expressing
the Green function through an auxiliary Hamiltonian which is explicitly Hermitian. This is
achieved by constructing a matrix Hamiltonian, Ĥ, with the following 2 × 2 block structure

Ĥ =
(

0 Ĥ − z

Ĥ† − z∗ 0

)
.

In this representation, the Green function of the non-Hermitian operator is expressed as the
off-diagonal element of the matrix Green function [9],

ĝ(z) = lim
η→0

Ĝ21(η, z)

where Ĝ(η, z) = (iη − Ĥ)−1.
This ‘method of Hermitization’ affords a convenient way of classifying the symmetries

of a non-Hermitian Hamiltonian according to the fundamental symmetries of its Hermitian
counterpart. The utility of this classification will become manifest presently in the construction
of the statistical field theory of the non-Hermitian system. As an example, let us consider
the Hamiltonian involving an imaginary scalar potential (1). Applied to this problem, the
Hermitization procedure leads to the matrix Hamiltonian

Ĥ = (
ζ̂p̂ − x + W

)
σ1 + (y − V ) σ2

where the Pauli matrices σ i act in the 2 × 2 sub-space, and ζ̂p̂ = p̂2/2m.
In fact, the matrix structure of Ĥ bears much in common with the Gor’kov or Bogoliu-

bov-de Gennes quasi-particle Hamiltonian of a weakly disordered superconductor [15]. To
foster this analogy, let us implement the canonical transformation

Ĥ �→ Ĥ# = #−1Ĥ# = (
ζ̂p̂ − x + W

)
σ3 + (y − V ) σ2 (5)

where # = exp[−iπσ2/4]. Associating the matrix structure with a ‘particle/hole’ space,
the operator Ĥ# can be identified as a Gor’kov Hamiltonian for a disordered superconductor.
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Here x plays the role of the chemical potential, while ζ̂p̂ + W denotes the bare Hamiltonian
and (y − V ) represents the (in this case real, random) order parameter. However, taking the
analogy further, the energy argument in the Gor’kov Green function corresponds, in this case,
to the infinitesimal iη of the matrix Green function Ĝ−1

# (η, z)—evidently, we are interested in
the zero-energy quasi-particle states of the disordered, time-reversal invariant superconductor
with a random real order parameter.

In its Hermitian form, the above Hamiltonian can be classified according to its fundamental
symmetries. According to the classification introduced by Zirnbauer [36], the matrix
construction places a general non-Hermitian Hamiltonian in the chiral unitary symmetry
class denoted AIII3, a general element of which has the form(

0 Z

Z† 0

)
where Z is an arbitrary complex matrix. However, within this group, there are four subclasses
of higher symmetry: class CI (the time-reversal invariant superconductor) where matrices Z
are complex symmetric; class BDI (chiral orthogonal) where the elements of Z are arbitrary
and real; class CII where Z has an underlying symplectic structure; and class DIII where Z is
complex antisymmetric. As will be clear from the forthcoming analysis, the statistical field
theory describing the non-Hermitian spectral properties has soft modes associated with each
universality class. From our discussion above, the imaginary scalar potential is accommodated
in the symmetry class CI.

As the second example, let us consider the non-Hermitian Hamiltonian (2) involving the
random imaginary vector potential. In this case, the Hermitization procedure leads to the
matrix Hamiltonian

Ĥ# =
(

p̂2 − h2

2m
+ W − x

)
σ3 +

(
y − p̂ · h + h · p̂

2m

)
σ2. (6)

As a result, we find that the system belongs to a different class depending on the value of the
imaginary component of the energy argument y. Along the real axis (i.e. for y = 0) Ĥ is real
and therefore belongs to the symmetry class BDI. Away from the real axis the Hamiltonian
becomes complex and the symmetry is lowered to class AIII. Later we will discuss the physical
manifestations of the discrete symmetries in the two limits.

2.2. Generating functional

With this background, let us now turn to the construction of a field theory to describe statistical
correlations of the non-Hermitian model. Motivated by the correspondence outlined above,
the analysis will parallel previous investigations of the weakly disordered superconductor
[37–39]. The starting point is the generating functional for the single-particle Green function.
Adopting the convention h̄ = c = 1 throughout, the latter is expressed as a field integral
involving two independent four-component supervector fields ψ(r) and ψ̄(r) with elements
having both commuting/anti-commuting and ‘particle/hole’ indices:

Z[j ] =
∫

D(ψ̄,ψ) exp

[
i
∫

dr ψ̄(iη − Ĥ)ψ +
∫

dr(ψ̄j + j̄ψ)

]
.

3 The notation adopted by Zirnbauer is motivated by that introduced by Cartan to classify the 10 + 1 symmetric
spaces.
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Elements of the Green function can be generated from the source terms j(r) and j̄ (r). For
example, from the generating function one can obtain the DoS according to the identity

ν(z) = i

π
∂z∗ lim

η→0

∫
dr

Ld

δ2

δj̄B
2 (r)δj

B
1 (r)

Z[j ]

∣∣∣∣
j=0

. (7)

To be concrete, let us first consider the properties of the Hamiltonian involving the
imaginary scalar potential. To exploit the analogy with the superconducting system, it is
again convenient to implement the gauge transformation ψ �→ #ψ whereupon the generating
functional assumes the form

Z[0] =
∫

D(ψ̄,ψ) exp

[
i
∫

dr ψ̄(r)
(
iη − Ĥ#

)
ψ(r)

]
(8)

where Ĥ# is defined above (5). Now, as with the superconductor, the matrix Hamiltonian (6)
satisfies the particle/hole or ‘charge-conjugation’ (CC) symmetry

−σ2ĤT
#σ2 = Ĥ#.

The latter is responsible for quantum interference effects which modify the long-range or
low-energy properties of the average Green function. To accommodate these effects it is
convenient to double the field space

2ψ̄(iη − Ĥ#)ψ = ψ̄(iη − Ĥ#)ψ + ψT(iη − ĤT
#)ψ̄

T

= ψ̄
(
iη − Ĥ#

)
ψ + ψT(iη + σ2Ĥ#σ2)ψ̄

T = 2(̄(iησ cc
3 − Ĥ#)(

where, defining the Pauli matrix σ cc
3 which operates in the charge-conjugation (CC) space,

( = 1√
2

(
ψ

σ2ψ̄
T

)
cc

(̄ = 1√
2

(
ψ̄ − ψTσ2

)
cc.

As a result, the generating functional takes the form

Z[0] =
∫

D((̄,() exp

{
i
∫

dr (̄(r)
[
iησ cc

3 +
(
x − ζ̂p̂ − W

)
σ3 − (y − V ) σ2

]
((r)

}
.

With this definition, the fields ( and (̄ are not independent but obey the symmetry relations

( = σ2γ (̄T (̄ = −(Tσ2γ
T (9)

with γ = EBB ⊗ σCC
1 − iEFF ⊗ σCC

2 , where EBB = diag(1, 0)BF and EFF = diag(0, 1)BF are
the projectors on the boson–boson and fermion–fermion sectors, respectively. This completes
the construction of the generating functional as a functional field integral. To make further
progress, we can draw on the intuition afforded by existing studies of the superconducting
system.

2.2.1. Disorder averaging. As a first step towards the construction of an effective low-energy
theory, it is necessary to subject the generating functional to an ensemble average over the
random impurity distribution. For this purpose we will take both the real and imaginary
components of the random scalar potential to be Gaussian δ-correlated with zero mean, and
correlation

〈W(r1)W(r2)〉W = 1

2πντ
δd(r1 − r2) 〈V (r1)V (r2)〉V = 1

2πντn
δd(r1 − r2) (10)

where ν ≡ (,Ld)−1 ∼ m(2mx)(d−2)/2 represents the unperturbed DoS of the Hermitian
Hamiltonian ζ̂p̂ at energy x, while τ and τ n denote, respectively, the mean scattering time of
the real and imaginary components of the potential. In the following, we will suppose that the
imaginary component of the scattering potential is weak, i.e. τn � τ .
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The ensemble averaging over the real random scalar potentialW(r) induces an interaction
of the fields which can be decoupled by the introduction of an 8 × 8 component Hubbard–
Stratonovich field Q,〈
exp

[
−i
∫

dr (̄Wσ3(

]〉
W

=
∫

DQ exp

[∫
dr

(
πν

8τ
str Q2 − 1

2τ
(̄Qσ3(

)]
.

Transforming the fields according to the symmetry (9), one finds that the supermatrix fields,
Q(r), must be subjected to the constraint

Q = σ1γQTγ Tσ1. (11)

Similarly, the interaction of the fields induced by the ensemble average over the random
imaginary scalar potential V (r) can be decoupled by an 8 × 8 component Hubbard–
Stratonovich field P(r), satisfying the symmetry constraint, P = γP Tγ T:〈
exp

[
i
∫

dr (̄V σ2(

]〉
V

=
∫

DP exp

[∫
dr

(
πν

8τn
str P 2 − 1

2τn
(̄Pσ2(

)]
.

Finally, an integration over the fields ( obtains

〈Z[0]〉W,V =
∫

DQ

∫
DP exp

{
πν

8

∫
dr str

(
Q2

τ
+

P 2

τn

)
− 1

2

∫
dr str〈r| ln Ĝ−1|r〉

}
where

Ĝ−1 = iησ3 ⊗ σCC
3 + x − ζ̂p̂ − iyσ1 +

i

2τ
Q − 1

2τn
Pσ1

represents the supermatrix Green function. Further progress in this case is possible only
within the saddle-point approximation. Following [37], in the quasi-classical approximation
x � 1/τ � [1/τn, y], it is convenient to implement a two-level procedure in which we first
formulate an ‘intermediate energy-scale’ action in which the terms in y and 1/τn are treated
as small symmetry-breaking sources. Later, the influence of V (through P) on the complex
DoS can be explored within a stationary analysis of this reduced action.

2.2.2. Intermediate energy-scale action. Neglecting the terms in y and P, a variation of the
action with respect to Q obtains the saddle-point equation

Q(r) = i

πν
G0(r, r) Ĝ−1

0 = iησCC
3 ⊗ σ3 + x − ζ̂p̂ +

i

2τ
Q.

In the quasi-classical limit, xτ � 1, taking Q to be homogeneous in space, this equation can
be solved in the pole approximation with Q = ±1. Taking into account the analytical
properties of the average Green function, we identify the solution Qsp = σ3 ⊗ σCC

3 .
However, in the limit η → 0, the saddle-point solution is not unique, but expands to
span a degenerate manifold of solutions generated by the homogeneous pseudo-unitary
transformations Qsp = T σ3 ⊗ σCC

3 T −1 compatible with the symmetry of Q (11).
Fluctuations around the saddle-point can be classified into longitudinal and transverse

modes according to whether they violate the non-linear constraint Q2(r) = I or not. In
the quasi-classical limit, the longitudinal fluctuations are rendered massive and do not
contribute to the low-energy properties of the generating functional. On the other hand,
transverse fluctuations of the fields become soft and must be accommodated. Taking into
account soft fluctuations Q(r) = T (r)σ3 ⊗ σCC

3 T −1(r), and restoring the perturbations y and
P, a gradient expansion of the action obtains the average generating functional

〈Z[0]〉W,V =
∫
Q2=I

DQ

∫
DP exp

{
πν

8τn

∫
dr str P 2

}
× exp

{
πν

8

∫
dr str

[
D(∇Q)2 + 4i

(
iησ3 ⊗ σCC

3 − iyσ1 − P

2τn
σ1

)
Q

]}
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where D = v2
F τ/d is the diffusion constant. Here we have neglected the higher order terms

in yτ and τ/τn. In the same approximation yτ � 1, the supermatrix Green function takes the
form [35]

G0(r, r
′) = −iπνfd(|r − r′|)Q

(
r + r′

2

)
where fd(r) = #(d/2)[2/kF r]d/2−1Jd/2−1(kF r) exp[−r/2] is the Friedel function, and
kF = √

2mx.
Finally, integrating over the supermatrices P, we obtain the average generating functional

〈Z[0]〉W,V =
∫
Q2=I

DQ exp {−S[Q]}
where

S[Q] = −πν

8

∫
dr str

[
D(∇Q)2 − 4

(
ησ3 ⊗ σCC

3 − yσ1
)
Q +

1

τn
(σ1Q)2

]
. (12)

This completes the construction of the intermediate energy-scale action for the non-
Hermitian system. Returning to the analogy with the superconductor, we note that the form
of the action (12) coincides with that of a disordered superconductor subject to a random
real-order parameter with an average magnitude y and variance set by 1/τn. To investigate the
influence of the imaginary potential on the complex DoS, it is necessary to subject this action
to a further stationary analysis and obtain the low-energy action.

2.2.3. Low-energy scale action. Although the soft-mode action (12) is stabilized by the
quasi-classical parameter xτ , the terms in y and 1/τn render the majority of field fluctuations
massive. To obtain the low-energy saddle-point, let us again vary the action with respect to Q
subject to the non-linear constraint, Q2 = I:

D∇(Q∇Q) − [
ησ3 ⊗ σCC

3 − yσ1,Q
]

+
1

2τn
[σ1Qσ1,Q] = 0.

Applying the ansatz Q = cos θ̂σ3 ⊗ σCC
3 + sin θ̂σ1, where θ̂ = diag(iθBB, θFF)B,F, the saddle-

point equation assumes the form

D∇2θ̂ − 2[η sin θ̂ + y cos θ̂ ] − 1

τn
sin 2θ̂ = 0 (13)

a result reminiscent of the Abrikosov–Gor’kov mean-field equation of the disordered
superconductor subject to a pair-breaking perturbation [40]. Taking the solution to be
symmetric and homogeneous in space, one obtains

iθBB = θFF = θMF =
{−arcsin(yτn) |y|τn < 1

−π
2 sign(y) |y|τn � 1.

(14)

Once again, as η → 0, this solution is not unique but expands to span an entire
manifold parameterized by transformations Q = TQMFT

−1, where [T , σ1] = 0 and
T = γ (T −1)Tγ T which represent the soft fluctuations corresponding to the time-reversal
invariant superconductor symmetry class CI. Substituted back into the action, these fluctuations
are described by the corresponding low-energy action [15]

Seff[Q̄] = −πν

8

∫
dr D

(
1 − y2τ 2

n

)
str(∇Q̄)2

whereQ̄ = T σ3 ⊗ σCC
3 T −1. This completes our construction of the field theory describing

spectral correlations in the disordered non-Hermitian system. In the following section we will
use these results to explore the support of the complex DoS.
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Figure 2. Complex DoS in the quasi-classical limit xτ � 1 for the two-dimensional scalar
potential problem. (a) In the mean-field approximation, the DoS is equal to ντn/2 inside the region
|y|τn � 1 of the complex plane z = x + iy and zero outside. (b) 〈ν(z)〉W,V versus y for a fixed x
and for two values of the scattering time, τn > τ ′

n: while in the mean-field approximation the DoS
shows sharp edges, rare realizations of the random potential give rise to tail states (section 2.3).

2.3. Complex density of states

Making use of equation (7), the complex DoS is obtained from the generating function as

〈ν(z, r)〉W,V = − i

4
ν∂z∗ lim

η→0

〈
str
[
(I − σ1) ⊗ E11

CC ⊗ σBF
3 Q(r)

]〉
Q

(15)

where 〈· · ·〉Q = ∫
Q2=I

DQ · · · e−S[Q] where S[Q] represents the intermediate energy-scale
action (12). In the homogeneous saddle-point (i.e. mean-field) approximation (14), the
corresponding DoS takes the form

〈ν(z)〉W,V = iν∂z∗ lim
η→0

sin θMF =
{ ντn

2 |y|τn < 1

0 |y|τn � 1.
(16)

As expected, at the level of the mean-field, the field theory predicts a migration of the DoS
off the real line and into the complex plane. The density of complex eigenvalues is constant
over the region of support set by the effective scattering rate of the non-Hermitian potential.
Reassuringly, the expression for the DoS satisfies the sum rule

∫
dy〈ν(z)〉W,V = ν. In the

two-dimensional case, the result is illustrated qualitatively in figure 2. As the scattering time
τ n does not depend on the real part of the energy x, the width of the mean-field spectrum
boundary is constant.

To complete the analysis, it is necessary to take into account the fluctuations of the fields
around the saddle-point. As discussed above, these fluctuations divide into a set which is
massive (on the scale of y) and a massless set. Interestingly, one finds that the latter commute
with the source and do not contribute to the DoS!

Indeed, the general profile of the support is born out by numerical simulation. Figure 1
shows the amalgamation of data for the two-dimensional random system generated from 100
realizations of the complex random scalar potential Hamiltonian. However, instead of a sharp
cut-off in the support, the data clearly indicate a soft edge with eigenvalues occupying the
region outside the mean-field prediction (16). How can this observation be reconciled with the
results of the field theory? Surprisingly, taking into account massive fluctuations of the action
perturbatively, the mean-field prediction remains intact. In fact, the tail states that decorate the
edge of the support are generated by optimal fluctuations of the real random impurity potential
and are reflected in non-perturbative instanton configurations of the action.
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Figure 3. Integration contours for boson–boson and fermion–fermion fields in the complex plane
θ̂ ′ = −iθ̂ sign(y). The two degenerate bounce solutions are qualitatively shown, together with the
mean-field starting point φMF and the inversion point φinv.

2.4. Tail states and instantons

To identify corrections to the mean-field DoS (16), we can draw on the intuition afforded by
recent studies of sub-gap state formation due to optimal fluctuations in the superconducting
system [41]. While the homogeneous solution of the mean-field equation gives rise to
a hard edge of the DoS support, we will see that inhomogeneous symmetry-broken field
configurations reflect the influence of rare realizations or ‘optimal fluctuations’ of the random
scalar potentials which soften the edge (figure 2). Here, for simplicity, let us focus on
the quasi one-dimensional case, generalizing the discussion to the d-dimensional system in
section 2.4.2.

2.4.1. Quasi one-dimensional geometry. To explore the influence of inhomogeneous field
configurations of the action, let us revisit the mean-field equation of motion (13). Operationally,
it is convenient to not deal with the saddle-point equation (13) itself, but rather its first integral,
D(∇ θ̂ )2 − yV (θ̂) = const, where

V (θ̂) = −4

[
η

y
cos θ̂ − sin θ̂

]
− 1

yτn
cos 2θ̂

denotes the effective complex ‘potential’.
To identify the inhomogeneous instanton solution, let us first note that outside the region of

support, |y|τn � 1, the homogeneous mean-field solution takes the form θMF = −π/2 sign(y).
Taking into account the condition that the solution should coincide with θMF at infinity, one
can identify a ‘bounce’ solution parameterized by θ = [−π/2 + iφ]sign(y), with φ real,
involving the real potential VR(φ) ≡ V ([−π/2 + iφ]sign(y)) with endpoint φinv such that
VR(φinv) = VR(φMF).

Now integration over the angles θ̂ is constrained to certain contours [35]. Is the bounce
solution accessible to both? As usual, the contour of integration over the boson–boson field θBB

includes the entire real axis, while for the fermion–fermion field iθFF runs along the imaginary
axis from 0 to iπ . With a smooth deformation of the integration contours, the mean-field
saddle-point is accessible to both the angles θ̂ [37, 38]. By contrast, the particular bounce
solution and the mean-field solution can be reached simultaneously by a smooth deformation
of the integration contour only for the boson–boson field θBB (see figure 3). The particular
bounce solution breaks the supersymmetry.
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Figure 4. Rescaled potential VR(φ)− VR(0) versus the variable φ for κ = 2.5, κ = 1.6 and κ = 1.

Applying the parameterization for the ‘bounce’

iθBB(r) =
[
−π

2
+ iφ(r)

]
sign(y) θFF = θMF

the first integral takes the form

(∇r/ξφ)
2 + VR(φ) = VR(φ MF)VR(φ) = −4 coshφ + κ−1 cosh 2φ (17)

where ξ = (D/|y|)1/2 and

κ = τn|y|. (18)

Here φMF = 0 for |y|τn � 1, while φMF is purely imaginary for |y|τn < 1. Typical shapes of
the potential VR(φ) for different values of κ are shown in figure 4. A bounce solution exists
only for values of κ bigger than one, while for κ < 1 the unique solution is the homogeneous
one, φ = φMF.

For the quasi one-dimensional system, it is possible to derive analytic expressions for
both the real instanton action Sinst = 2πν|y|ξSφ(κ)

Sφ(κ) =
∫ φinv

0
dφ
√
VR(0) − VR(φ) (19)

where φinv = |arccosh(2κ − 1)| is the endpoint of the motion, and the bounce solution φ(r).
In particular, for Sφ(κ) we have (figure 6)

Sφ(κ) =
√

2κ

{
−2

√
κ − 1

κ
+ 2 arctan

√
κ − 1

}
. (20)

At the same time, imposing the boundary conditions φ(r → ±∞) = 0, from the first integral
(17) obtains the bounce solution

coshφ(r) = κ2 + 2e−2|r |/r0(κ)
√
κ − 1(3κ − 2) + e−4|r |/r0(κ)(κ − 1)

κ2 + 2e−2|r |/r0(κ)
√
κ − 1(2 − κ) + e−4|r |/r0(κ)(κ − 1)

where

r0(κ) =
[

Dτn

2(κ − 1)

]1/2

(21)



Optimal fluctuations and tail states of non-Hermitian operators 10817

−15 −10 −5 0 5 10 15
0.0

0.5

1.0

1.5

2.0

Figure 5. Exact (solid line) and approximate (dashed line) bounce solution φ (r) versus r/
√
Dτn/2

in the quasi one-dimensional geometry for two different values of the inverse of the imaginary
‘impurity’ concentration, κ = 1.6 and κ = 1.05. The interval [−r0(κ), r0(κ)] is explicitly plotted
for the exact solutions.

defines the extent of the ‘droplet’ (see figure 5). In particular, we note that, on approaching
the band edge (κ → 1+), r0(κ) → ∞.

Now close to the band edge (κ → 1+), the maximum of the potential VR(φ) converges
on the two minima allowing the development of a perturbative expansion in φ � φMF = 0.
Setting β = (4 − κ)/6κ � 1/2,

VR(φ) �
φ�0

VR(0) − 2
κ − 1

κ
φ2 + βφ4 + O(φ6). (22)

In this approximation the action and the bounce solution are given, respectively, by

Sφ(κ) �
κ�1

4
√

2

3
(κ − 1)3/2 φ(r) �

κ�1
4
√

2

√
κ − 1

κ

e−|r |/r0(κ)

e−2|r |/r0(κ) + 4β
.

This completes the estimate of the contribution to the action from a single bounce
configuration. However, to complete the analysis it is necessary to explore the influence
of fluctuations around the instanton solution. Here we sketch the important aspects of the
analysis referring to details of the parallel discussion by [41] in the context of the disordered
superconductor. Generally, field fluctuations around the instanton solution can be separated
into ‘radial’ and ‘angular’ contributions. The former involve fluctuations of the diagonal
elements θ̂ , while the latter describe rotations including those Grassmann transformations
which mix the BF sector. Both classes of fluctuations play an important role.

Dealing first with the angular fluctuations, supersymmetry breaking of the bounce is
accompanied by the appearance of a Grassmann zero-mode separated by an energy gap
from higher excitations. This Goldstone mode restores the global supersymmetry of the
theory. Crucially, this mode ensures that the saddle-point respects the normalization condition
〈Z[0]〉W,V = 1. Associated with radial fluctuations around the bounce, there exists a zero-
mode due to translational invariance of the solution, and a negative energy mode (cf [42]).
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Figure 6. Exact action Sφ (solid line) versus κ in the quasi one-dimensional geometry together
with the first term of the expansion in (κ − 1) (dashed line). The action vanishes as κ → 1+. In
the inset, the rescaled DoS 〈ν(z)〉W,V /ν ∼ exp[−Sinst] versus y τ n, for πν

√
D/τn = 2, is plotted.

For values of κ sign(y) near the critical values ± 1, the saddle-point analysis becomes unreliable.
Here, fluctuations lead to a smooth interpolation between the DoS in the tail region and that comes
from the bulk mean-field.

Combining these contributions, one obtains the following expression for the local complex
DoS in the tail region,

〈ν(z, r)〉W,V ∼
κ>1

iν∂z∗ [coshφ(r) − coshφMF] |χ0(r)|2e−Sinst (23)

where χ0(r) represents the eigenfunction for the Grassmann zero mode and Sinst denotes the
instanton action (20). Thus, to exponential accuracy, the complex local DoS in the tail region
becomes non-zero only in the vicinity of the bounce. Mechanisms of quantum interference
due to optimal potential fluctuations in the non-Hermitian system conspire to localize states
in the tail regions on a length scale r0(κ) greatly in excess of the wavelength λ = 1/kF.

2.4.2. Generalization to dimensions 1< d < 4. Close to the band edge (κ � 1), a
generalization of the quasi one-dimensional results to higher dimensions can be developed
by dimensional analysis. From the expansion (22) for the potential VR(φ), the bounce
configuration is shown to have the scaling form

φ(r) = 1√
β

[
ξ

r0(κ)

]
f (r/r0(κ))

which, in turn, implies the instanton action (19):

Sinst �
κ�1

4πad(,τn)
(d−2)/2gd/2 [2(τn|y| − 1)](4−d)/2 . (24)

Here g = νDLd−2 and , = (νLd)−1 represent, respectively, the dimensionless conductance
and average level spacing of the Hermitian system (i.e. with V = 0), and ad is a numerical
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Figure 7. Plot of the (logarithm of the) complex DoS versus �[z] = y for a fixed value of �[z] = x

taken from the numerical simulation of figure 1. The exponential fit of the data is shown as solid
curve.

constant (a0 = 1/4 and a1 = 1/3)4. Later, in discussing the universality of the results, we will
return to consider the zero-dimensional situation.

Taken together with equation (23), this result shows that the complex DoS in the tail
region varies exponentially with the separation from the mean-field edge. The power law
dependence of the exponent depends on dimensionality, presenting a linear dependence on
(τn|y|−1) in the two-dimensional system. In this case, moreover, the only dependence in (24)
on the real part of the energy x occurs through the dimensionless conductance, g = νD ∼ |x|,
so that the width of the exponential tail scales as 1/|x|, as qualitatively appears in figure 1.
A comparison with the numerical simulation is shown in figure 7. The results show a good
quantitative agreement with the theory for the tail of the DoS. Note that close to (but within)
the edge of the support of the spectrum, the saddle-point approximation used in estimating
the mean-field DoS becomes unreliable. As shown by the zero-dimensional analysis below,
an honest treatment of fluctuations in this region provides a smooth interpolation between the
bulk and tail states.

3. Random imaginary vector potential

To conclude our discussion of tail states in the non-Hermitian system, we now turn to an
analysis of the random imaginary vector potential Hamiltonian (2). Once again, our approach
will be to formulate an effective field theory from which the spectral properties can be
determined. Although, as shown in section 2.1, the random vector potential Hamiltonian
belongs to a different fundamental symmetry from the random scalar potential Hamiltonian,
we show below that, with some qualification, the DoS in the vicinity of the support exhibits
the same universal scaling form.

4 Specifically ad = ∫
du[(∇uf )2 + f 2(u) − f 4(u)].
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To be concrete, let us consider a d-dimensional Hamiltonian (2) involving an imaginary
vector potential field h(r) together with a real random scalar potential W(r). Once again,
let us assume that the scalar potential W(r) is drawn from a Gaussian δ-correlated impurity
distribution (10). Similarly, we will be primarily concerned with a system exhibiting a
random vector potential drawn from a Gaussian distribution with zero mean 〈h(r)〉h = 0 and
correlation

〈hi(q)hj (q
′)〉h = (2π)dδ(q + q′)f (|q|)

[
γ1

(
δij − qiqj

q2

)
+ γ2

qiqj

q2

]
. (25)

Here, for reasons that will become clear below, we have introduced an ‘envelope’f (|q|) which
limits the correlations of the fields at both microscopic and macroscopic length scales. Setting

h(r) = ∇ϕ(r) + ∇ ∧ χ(r) (26)

γ 1 is identified as the strength of fluctuations of the incompressible component of the vector
field, χ(r), while γ 2 controls the irrotational part, ϕ (r). In the following, it will also be useful
to contrast the behaviour of the random vector potential system with that of a constant vector
field h(r) = const = h0—the Hatano–Nelson system [3].

3.1. Background

Before turning to the formal analysis of the statistical field theory, that begins with some
general considerations which identify certain idiosyncrasies of the constant vector potential
system and how they impact upon the existence of tail states in the random vector potential
system. Previous investigations of the former have revealed unusual localization properties of
the random Hamiltonian which contrast with those of its Hermitian (i.e. h0 = 0) counterpart.
Specifically, it was shown in [3] that, for the strictly one-dimensional system subject to periodic
boundary conditions at infinity, when the field, |h0|, exceeds a critical value hc corresponding
to the (energy dependent) localization length ξloc = 1/hc of the Hermitian system, there is
a transition to a delocalized phase. Since then, this result has been generalized to the quasi-
one-dimensional system by Kolesnikov and Efetov [18] using techniques which parallel those
discussed here.

Now, following [3], a simple argument can be established to describe qualitatively
the origin of the transition. For a constant imaginary vector potential, h0, a similarity
transformation of the left and right eigenfunctions φL

i (r) �→ φL
i (r) exp(−h0 · r) and

φR
i (r) �→ exp(h0 · r)φR

i (r) removes its dependence on h0 from the Hamiltonian. Being
now Hermitian, the eigenvalues of the Hamiltonian must, therefore, be real and specified
by those of the unperturbed random system. However, if periodic boundary conditions are
imposed, the similarity transformation must be applied with caution: if the eigenfunctions of
the Hermitian system are localized on a length scale ξloc < |h0| the similarity transformation
is incompatible with the periodic boundary conditions and cannot be imposed. Here there is a
transition from a localized phase, where the eigenvalues are real, to a delocalized phase where
the eigenvalues migrate into the complex plane.

Now what does this phenomenology tell us about the existence of the tail states? Using
the same arguments, it is easy to deduce that optimal fluctuations of the impurity potential can
not induce localized tail states in the constant vector potential system: suppose that a tail state
appeared at some complex energy outside the band of bulk states. If the state is localized, it
must be insensitive to the boundary conditions at infinity and, therefore, its dependence on
the constant field can be removed by a similarity transformation. As such, it must therefore
be contained within the Hermitian theory, and its eigenvalue must be real. This contradiction
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Figure 8. A typical field configuration of the random vector field. Over the interval h, the flux
lines of h are approximately constant, preventing the existence of tail state.

strictly eliminates tail states from the infinite constant imaginary vector potential system. (Of
course, the Hermitian system can and will exhibit low-energy Lifshitz band tail states.)

With this background, let us now turn to consider the random vector potential system.
Once again, for a random field h(r) drawn from the Gaussian distribution (25), it is
straightforward to confirm that the similarity transformation φL

i (r) �→ φL
i (r) exp[−ϕ(r)]

and φR
i (r) �→ exp[ϕ(r)]φR

i (r) remove the dependence on the incompressible component,
ϕ(r) from the Hamiltonian. Therefore, when subject to any purely irrotational vector field
h(r) = ∇ϕ(r) (with zero average), the eigenvalues remain real and coincide with those of the
Hermitian system. Conversely, the incompressible field distribution h(r) = ∇ ∧ χ(r) cannot
be removed by similarity transformation. Such field configurations necessarily generate states
with complex eigenvalues.

Now, the random distribution (25) with f (|q|) = 1 imposes long-ranged, i.e. power-law
correlations in the incompressible field configuration. As well as admitting superdiffusion
processes [43–45] which dominate the relaxation to equilibrium in the classical system, these
long-range correlations impact upon the probability of finding tail states in the non-Hermitian
system: any random configuration of the incompressible field will involve field lines correlated
over arbitrarily long distances. These field lines advect particles in the classical system and
are responsible for the characteristic superdiffusion properties of the system. Now in such a
background, one can identify regions where the field lines are oriented over long distances,
say h (see figure 8). Within this region, the nucleation of tail states with a localization length
r0 < h is prohibited by the same mechanism described above for the Hatano–Nelson system.
Clearly, the phenomenology of tail state formation in the superdiffusive system is subtle, being
sensitive to the arrangement of both the scalar and the vector field.

Therefore, since we are interested here in exposing the general principles behind tail
state formation in the non-Hermitian system, to keep our discussion simple, we will limit
our considerations to distributions where the correlations of the field lines are limited to a
length scale h much smaller than the localization length of the incipient tail states, r0, i.e.
introducing a microscopic cut-off a, we set

f (|q|) =
{

1 1/h < |q| < 1/a
0 otherwise
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where h represents the maximum length scale of the field correlations. With these
considerations in mind, let us now turn to the development of the field theory of the non-
Hermitian system.

3.2. Field theory

Following the method outlined for the imaginary scalar potential system, our starting point
is the gauge-transformed ‘Hermitized’ matrix Hamiltonian (6). Now, under the ‘charge-
conjugation’ operation, the Hamiltonian transforms as

σ2
[Ĥ#(h)

]T
σ2 = −Ĥ#(−h).

The statistical properties of the non-Hermitian system can again be obtained from the
generating function (8) by forming an average over the real random potential W(r) and
introducing a slow-field decoupling. In doing so, one obtains the generating functional

〈Z[0]〉W =
∫

DQ exp

[
πν

8τ

∫
dr str Q2 − 1

2

∫
dr str〈r| ln Ĝ−1|r〉

]
(27)

where

Ĝ−1 = iησ3 ⊗ σCC
3 + x − 1

2m

[
p̂ − ih(r)σ1 ⊗ σCC

3

]2 − iyσ1 +
i

2τ
Q(r)

denotes the supermatrix Green function. As with the scalar potential, further progress is
possible only within a saddle-point approximation. However, following our discussion above,
it is now necessary to exercise some caution.

In the Hermitian system with a real vector potential A = ih, the conventional approach
[35] involves subjecting the action to a saddle-point approximation in the absence of the field.
The saddle-point manifold Q2 = I is unperturbed by the real vector potential and its effect
on the low-energy properties of the system can be accommodated at the level of the gradient
expansion. However, as emphasized in [18], in the presence of a constant imaginary vector
potential, h(r) = h0, depending on the magnitude of h0, it is possible to identify separate
saddle-points of the total effective action (27). Inside the localized phase (i.e. |h0| < hc),
the dependence on h0 can (and must) be removed by a rotation of Q—the counterpart of the
similarity transformation. The resulting theory reflects that of the Hermitian model and the
eigenvalues condense onto the real line. Conversely, in the delocalized phase (i.e. |h0|〉hc),
the similarity transformation on Q is inadmissible. Here the dependence of the action on
h0 must be developed explicitly, reflecting the fact that the eigenvalues acquire an imaginary
component. Similarly, for a random vector potential, it is necessary to remove the irrotational
component of the field h (i.e. ∇ϕ(r)) explicitly at the level of the saddle-point by subjecting
Q to a similarity transformation

Q(r) �→ e−ϕ(r)σ1⊗σCC
3 Q(r)eϕ(r)σ1⊗σCC

3 .

As expected, the same transformation leaves the source term for the DoS (15) unperturbed.
Without the irrotational component of the field, the saddle-point of the total action can be

analysed in the usual way, following a two-stage procedure. As before, taking into account the
quasi-classical parameter xτ � 1, one finds that the low-energy fluctuations are confined to
the manifold Q2(r) = I. Then, subjecting the action to a gradient expansion keeping yτ � 1
and

√
γ1 � −1, one obtains the non-linear σ -model action [4, 18, 35]

S[Q] = −πν

8

∫
dr str

[
D(∇̃Q)2 − 4

(
ησ3 ⊗ σCC

3 − yσ1
)
Q
]

(28)

where ∇̃ = ∇ − h
[
σ1 ⊗ σCC

3

]
represents the covariant derivative, and h ≡ ∇ ∧ χ reflects the

incompressible component of the field.
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Now, although the structure of the action compares with that of the imaginary scalar
potential field, it exhibits important differences which substantially influence the behaviour of
the system: specifically, in addition to the ‘diamagnetic’ contribution, i.e. the term proportional
to h2, the action presents a paramagnetic contribution, linear in h, which couples with the
gradient of Q. Although this term does not affect the homogeneous saddle-point solution, it is
responsible for the destabilisation of the tail states in the system with long-range correlations.
To see this explicitly, let us return to the consideration of the constant vector potential system.
Previously, in the qualitative discussion above, it was argued that such a system does not
accommodate tail states. How is this phenomenon reflected in the field theory?

In fact, for h(r) = h0 > hc, the action is still given by the non-linear σ -model (28).
However, in view of the paramagnetic term, to explore the saddle-point structure, it is necessary

to adopt a more general parameterization, Q = σ1 cos θ̂ + sin θ̂eρ̂σ1⊗σCC
3 σ3 ⊗ σCC

3 , where
ρ̂ = diag(ρBB, ρFF)B,F. In doing so, two coupled equations for θ̂ and ρ̂ are obtained:

D∇2θ̂ +
D

2
sin 2θ̂

[
(∇ρ̂)2 + 4|h0|2 + 4h0 · ∇ρ̂

]
+ 2y sin θ̂ = 0

∇ · [sin2 θ̂ (∇ρ̂ + 2h0)
] = 0. (29)

To understand the nature of these equations, let us focus on the quasi-one-dimensional system.
In this case the second equation can be integrated and substituted in the first one, giving,
respectively

D∇2θ̂ + Dj2 cos θ̂

sin3 θ̂
+ 2y sin θ̂ = 0 ∇ρ̂ = −2h0 +

j

sin2 θ̂

where j is a constant fixed by the boundary conditions. From these equations one can identify
a homogeneous supersymmetric solution, ∇ρ̂ = 0 and

cos θMF =
{−yτn |y|τn < 1

−sign(y) |y|τn � 1
(30)

where 1/τn = 2D|h0|2. Again, making use of equation (7), the homogeneous solution
translates to a complex DoS (16), which is flat and non-vanishing only in the interval |y|τn > 1.
Now, in the imaginary scalar potential problem, an instanton configuration of the saddle-point
equation was signalled by the existence of tail states. What happens in the present case? Since,
at infinity, the instanton solution is constrained to be the homogeneous one, the constant j is
determined by the homogeneous mean-field solution, j = 2h0 sin2 θMF. Therefore, using (30)
one can see that outside the bulk of the spectral support j vanishes. Therefore, the equation
of motion for θ̂ does not admit the existence of an instanton. As expected from the qualitative
discussion above, tails are therefore excluded from the constant imaginary vector potential
problem.

Similarly, in the random vector potential system with long-ranged correlations (i.e. for
f (|q|) = 1), we can expect the paramagnetic term to present a similar role. Indeed, subjecting
the generating functional to an average over the random distribution (25), one obtains a
non-local interaction of the fields. In the present context, such terms have been shown by
Taras-Semchuk and Efetov [46] to reproduce the known renormalization properties of the
superdiffusive system. However, in the present case, we have limited our considerations
to correlations of the vector field which extend over a maximum range h. Then, taking the
relevant field configurations of Q (i.e. those involving the instanton solution) to be long-ranged
on a scale r0 greatly in excess of h, the vector field entering the paramagnetic term can be
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Figure 9. Complex DoS for the imaginary vector potential problem in the quasi-classical limit
xτ � 1 for the two-dimensional system. (a) In the mean-field approximation, the DoS is equal to
ν/(4Dγ1) inside the region |y| � 2Dγ1 = 2τγ1|x|/m of the complex plane z = x + iy and zero
otherwise; (b) 〈ν(z)〉W,h versus y for two values of γ1 < γ ′

1. The tails of the DoS for |y|〉2τγ1|x|/m
are shown schematically.

replaced by its spatial average, i.e. the paramagnetic term can be eliminated. By contrast, the
diamagnetic contribution survives spatial averaging. The total action assumes the form

S[Q] = −πν

8

∫
dr str

[
D(∇Q)2 − 4

(
ησ3 ⊗ σCC

3 − yσ1
)
Q +

1

τn

(
Qσ1 ⊗ σCC

3

)2
]

(31)

where, setting γ̃1 = γ1L
d
∫

dq/(2π)d f (|q|)
1

τn
= 2(d − 1)Dγ̃1.

Now, as with the imaginary scalar potential, the profile of the bulk DoS and tail states can
be obtained by subjecting the action to a saddle-point analysis. Varying the action with respect
to Q, subject to the non-linear constraint Q2 = I, one obtains the homogeneous saddle-point
equation,

D∇(Q∇Q) − [
ησ3 ⊗ σCC

3 − yσ1,Q
]

+
1

2τn

[
σ1 ⊗ σCC

3 Qσ1 ⊗ σCC
3 ,Q

] = 0.

Then, applying the ansatz Q = cos θ̂σ3 ⊗ σCC
3 + sin θ̂σ1, where θ̂ = diag(iθBB, θFF)B,F, the

saddle-point equation coincides with equation (13) allowing the results of sections 2.3 and
2.4.2 to be imported. As a result, we can immediately deduce the homogeneous mean-field
solution (14) as well as the inhomogeneous instanton solution (13) of the saddle-point equation.
Thus, from the homogeneous mean-field solution, one obtains the expression (16) for the DoS,
i.e. the complex DoS is flat and non-vanishing over the interval

|y| < 1

τn
= 4(d − 1)

d

γ̃1|τ
m

|x|.
i.e., in the two-dimensional system, the support for the DoS occupies a wedge of the complex
plane with a width that scales in proportion to γ̃1|x| (see figure 9). Furthermore, making use
of equations (23) and (24), one obtains complex DoS in the tail region,

〈ν(z)〉W,h ∼ exp
{−4πad(,τn)

(d−2)/2gd/2 [2(τn|y| − 1)](4−d)/2}
where, as usual, g = νDLd−2 and , = (νLd)−1 represent, respectively, the dimensionless
conductance and average level spacing of the Hermitian system.

In fact, the behaviour of the vector potential system differs from the scalar potential
system only in the symmetry of the soft fluctuations around the saddle-point solution. As
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Figure 10. Complex eigenvalues for several realizations of the non-Hermitian vector potential
Hamiltonian, where the potential W is drawn from a Gaussian δ-correlated random impurity
distribution. Here we have included a lattice of 29 × 29 q-points in the momentum space. Note that
the constraints on the numerical simulation limit the relevant data to the interval x = �[z] < 200.

usual, the homogeneous saddle-point solution QMF is not unique but is spanned by an entire
manifold of solutions Q = TQMFT

−1 where for y �= 0, [T , σ1] = 0 = [
T , σ1 ⊗ σCC

3

]
with

T = γ (T −1)Tγ T (chiral symmetry class AIII in the classification [36]), while, for y = 0,[
T , σ1 ⊗ σCC

3

] = 0 (chiral symmetry class BDI). Now while the soft (class AIII) fluctuations
decouple from the DoS source (cf the scalar potential Hamiltonian), the soft (class BDI)
fluctuations couple. As a result, the complex DoS becomes strongly suppressed near y = 0,
while on the real axis, a finite density of eigenvalues accumulates as shown below.

The amalgamation of data for the eigenvalues of ca 100 realizations of the imaginary vector
potential Hamiltonian is shown in figure 10. The locus of the edge of the support predicted
by the mean-field theory is in good agreement with the numericals, while the depletion of
eigenvalues from the interval near y = 0 and the singular density at y = 0 are clearly resolved.
In particular, a comparison of the complex DoS with the numerical simulation shown in
figure 11 gives a good agreement with the theory.

3.3. Zero-dimensional limit

Finally, to conclude our discussion, let us turn to consider the properties of the imaginary
vector potential Hamiltonian when the system enters the zero-dimensional limit. Our analysis
above shows that, outside the region of support, the spectrum is characterized by tail states
which are localized on a length scale of r0 (κ) as given in (21). When the size of the droplet
region becomes in excess of the system size (inevitable in a finite system as one approaches the
edge of the support, κ → 1+), the system enters a zero-dimensional regime where the action is
dominated by the zero spatial mode of Q. Here the action collapses onto the zero-dimensional
theory analysed in detail by Efetov [4].

In this limit, we can proceed in two ways: firstly, following the discussion above, we can
apply the saddle-point analysis seeking a symmetry-broken field configuration. However, in
this case, the relative of the bounce solution is now a stationary point of the zero-dimensional
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Figure 11. Logarithm of the complex DoS versus �[z] = y for a fixed value of �[z] = x taken
from the numerical simulation of figure 10 (triangles). A second data set (circles) is shown for a
value of γ̃1 four times as large. Note that, as expected from the theory, the change in γ̃1 is reflected
in the slope of the exponent. The exponential fits of the two data are shown as solid curves.

potential V (φ). Alternatively, following Efetov [4] one can undertake an exact evaluation of
the zero-dimensional σ -model. A pursuit of the second route obtains the exact formula for the
complex DoS. The latter can be separated into two contributions ν(z) = νr (z) + νc(z),where

νr(x, y) = νδ(y)

∫ 1

0
dt e−a2t2

νc(x, y) = πν

,
B
( χ

2a

) ∫ 1

0
dt t sinh(χt) e−a2t2

where

χ = 2π |y|
,

a2 = π

,τn

with B(u) = 2
∫∞
u

dt e−t2
/
√
π and , is the level spacing of the Hermitian system. The

presence of the anomalous part νr (x, y) attests that a finite fraction of the eigenvalues remains
real. Otherwise the component νc(x, y) describes the distribution of complex eigenvalues and
its form is shown in figure 12. In the region χ � 2a the DoS coincides with the constant
mean-field value (16) for χ > 2a2, while outside this interval one has the following asymptotic
expansion:

νc(x, y) �
χ>2a2

√
πν

,

a

χ2
exp

(
χ − χ2

4a2
− a2

)
. (32)

With the exact result at hand, let us compare equation (32) with the result of the saddle-
point analysis from the symmetry-broken field configuration. In particular, in the zero-
dimensional case, the saddle-point analysis leads to the ‘instanton’ action

Sinst = π |y|
2,

[VR(0) − VR(φmin)]
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Figure 12. Complex DoS νc(z) as a function of 2πy/, for ν = 10 and a = 3, 5, 6, 7, 8.

where φmin is the minimum of the potential VR(φ) (figure 4). Evaluating this minimum, one
obtains

Sinst = π

,τn
(|y|τn − 1)2 = χ2

4a2
− χ + a2.

From the expression for the DoS (23), we can conclude that, in the zero-dimensional case, the
exponential dependence of the DoS coincides with the exact result obtained in [4].

4. Conclusions

To conclude, we have implemented a field theoretic scheme to explore the structure of the DoS
close to the edge of the support of two linear non-Hermitian operators describing a quantum
particle subject to a random imaginary scalar and an imaginary vector potential. In doing
so, we have provided a general scheme for the symmetry classification of non-Hermitian
operators. The field theoretic approach is easily generalized for the consideration of higher
point spectral correlations of the fields.

In the quasi-classical limit, where the real part of the energy is in excess of any other
energy-scale, the tails are dominated by ‘optimal configurations’ of the real random scalar
potential. In contrast to band tail states in semi-conductors, these states are quasi-classical
in nature being localized on the length scale ξ = (D/|y|)1/2 � . As such the profile of
the DoS and their dimension is universal depending on just a few material parameters and
independent of the nature of the impurity distribution. In the particular case of the constant
imaginary vector potential, we have argued that tail states of the system are prohibited by the
delocalization mechanism of Hatano and Nelson.
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